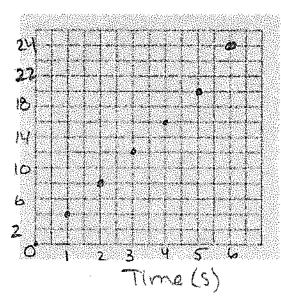
Answer key

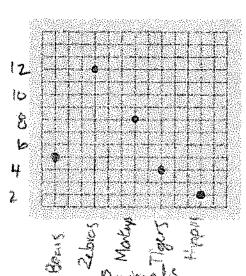

Statistics and Probability (Data Analysis) Review Booklet 3

- 1. Create, label and interpret line graphs to draw conclusions.
 - Determine the common attributes (title, axes and intervals) of line graphs by comparing a
 given set of line graphs.
 - Determine whether a given set of data can be represented by a line graph (continuous data) or a series of points (discrete data), and explain why.
 - Create a line graph from a given table of values or a given set of data.
 - Interpret a given line graph to draw conclusions.

Consider the following data:

Time (s)	Distance (m)
-0	0
1	4
2	8
3	12
4	16
5	20
6	24

- a. Construct an appropriate graph for the data above (use the appropriate graphing conventions)
- b. Is the data continuous or discrete? Explain.


Continuous as there would be data in between points

Consider the following data:

Animals	quantity
bears	5
Zebras	12
monkeys	8
tigers	4
hippos	2

- Quentity
- a. Construct an appropriate graph for the data above
- b. Is the data continuous or discrete? Explain.

Discrete-cannot have half of an animal

- Select, justify and use appropriate methods of collecting data, including:
 - · questionnaires
 - · experiments
 - databases
 - · electronic media.
 - Select a method for collecting data to answer a given question, and justify the choice.
 - Design and administer a questionnaire for collecting data to answer a given question, and record the results.
 - Answer a given question by performing an experiment, recording the results and drawing a conclusion.
 - Explain when it is appropriate to use a database as a source of data.
 - Gather data for a given question by using electronic media, including selecting data from databases.

Dexter wants to know what the favorite sport is for students in grade 6.

What is a fair question for this survey? a.

What is your favourite sport?

What is an example of a biased question? b.

-anything that might be persuasive ex baskateall is very popular what is your Who would you ask this question for this survey?

C.

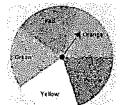
Grade 6 students

d. Describe one way that you could display the results of this survey.

Bar graph

- 3. Graph collected data, and analyze the graph to solve problems.
 - Determine an appropriate type of graph for displaying a set of collected data, and justify the choice of graph.
 - Solve a given problem by graphing data and interpreting the resulting graph.

Statistics and Probability (Chance and Uncertainty)


- 4. Demonstrate an understanding of probability by:
 - · identifying all possible outcomes of a probability experiment
 - · differentiating between experimental and theoretical probability
 - · determining the theoretical probability of outcomes in a probability experiment
 - determining the experimental probability of outcomes in a probability experiment
 - comparing experimental results with the theoretical probability for an experiment.
 - List the possible outcomes of a probability experiment, such as:
 - · tossing a com
 - · rolling a die with a given number of sides
 - spinning a spinner with a given number of sectors.
 - Determine the theoretical probability of an outcome occurring for a given probability experiment.
 - Predict the probability of a given outcome occurring for a given probability experiment by using theoretical probability.
 - Conduct a probability experiment, with or without technology, and compare the experimental results with the theoretical probability.
 - Explain that as the number of trials in a probability experiment increases, the experimental probability approaches theoretical probability of a particular outcome.
 - Distinguish between theoretical probability and experimental probability, and explain the differences.

Dexter is rolling a six sided dice what is the theoretical probability of rolling:

Consider the spinner below, what is the theoretical probability of:

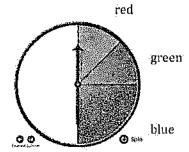
b. P(green or blue)

Ċ, P(not red)

Dexter tosses 2 coins 50 times and Dexter gets the following outcomes:

Coins	frequency
НН	14
HT	25
TT	11

What is the experimental probability of landing:


P (at least one H) b.

Consider the following spinner, based on this spinner what is the probability of spinning:

P(red) a.

yellow

P(blue) b.

P(yellow)

P(not red)

C.

d.

To win you must land on red, is this a fair game? Explain. e.

No. Red only has a 1 chance